LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION - STATISTICS

SECOND SEMESTER - APRIL 2015

ST 2815 - TESTING STATISTICAL HYPOTHESIS

Date: 18/04/2015 Time : 01:00-04:00 Dept. No.

Max.: 100 Marks

 $(10 \ge 2 = 20)$

SECTION – A

Answer ALL the following questions

- 1. What is randomized test function?
- 2. Write any two examples for simple and composite hypothesis.
- 3. Define uniformly most powerful test.
- 4. Let X ~ B(1, θ), θ = 0.4,0.5. For testing H: θ = 0.4 Vs K: θ = 0.5, a test is given by $\Phi(x) = \begin{cases} 0.2 & if \quad x = 0\\ 0.5 & if \quad x = 1 \end{cases}$

Find the power of the test.

- 5. Show that an UMP test is unbiased.
- 6. Define MLR property.
- 7. Justify the following statement "A test with Neyman structure is a – similar"
- 8. Define multi-parameter exponential family with an example.
- 9. Show that $T(x) = \frac{X_1}{X_2}$ is invariant with respect to scale transformation.
- 10. Briefly explain the principles of LRT.

SECTION – B

Answer any FIVE of the following questions

(5x 8 = 40)11. Prove that one parameter exponential family possesses Monotone Likelihood Property.

12. Consider the following probability distribution of X.

Х	1	2	3	4	5
Η	0.02	0.03	0.015	0.05	0.885
К	0.03	0.045	0.15	0.24	0.535

Define three test functions φ_1, φ_2 and φ_3 such that $\varphi_1 = \begin{cases} 1 & if \ x = 1, 3, 4 \\ 0 & , 0 therwise \end{cases}, \varphi_2 = \begin{cases} 1 & if \ x = 3 \\ 0, 0 therwise \end{cases}$ and $\varphi_3 = \begin{cases} 1 & if \ x = 1 \text{ or } 2 \\ 0, 0 therwise \end{cases}$. Identify the most powerful test of level 0.05.

13. Let $X_1, X_2, ..., X_n$ be a random sample from $U(0, \theta), \theta > 0$. Derive UMP level a test for testing the hypothesis $H : \theta = \theta_0$ against $K : \theta \neq \theta_0$.

- 14. Let X follows B(1, θ), $\theta = 0.1$, 0.2, 0.3. For testing the hypothesis H : $\theta = 0.2$ against K : $\theta = 0.1$, 0.3. Show that UMP test does not exist.
- 15. State the generalized Neyman Pearson lemma.
- 16. Derive UMPU level a test for testing the hypothesis $H : \theta_1 \le \theta \le \theta_2$ against $K : \theta < \theta_1$ or $\theta > \theta_2$ for one parameter exponential family.
- 17. Let $X_1, X_2, ..., X_m$ be a random sample from P(λ) and $Y_1, Y_2, ..., Y_n$ be a random sample from P(μ). Derive UMPU level α test for testing the hypothesis H : $\lambda \leq \mu$ Vs K: $\lambda > \mu$.
- 18. Define Multi Parameter exponential family and its properties.

SECTION – C

 $(2x\ 20 = 40)$

(10)

Answer any TWO of the following questions

- 19. State and prove the necessary as well as sufficient conditions of fundamental
Neyman Pearson lemma.(20)
- 20. a) State and prove MLR theorem.
 - b) Let $X_1, X_2, ..., X_n$ be a random sample from $N(\mu, \sigma^2)$, $\theta \in \mathbb{R}$. Derive UMP level α test for testing the hypothesis $H_0 : \mu \le \mu_0$ against $H_1 : \mu > \mu_0$. (10)
- 21. Consider the (k+1) parameter exponential family. Derive the conditional UMPU level α test for testing $H_0: \theta \le \theta_0$ against $H_1: \theta > \theta_0$. (20)
- 22. Let X and Y follows $N(\mu_1, \sigma_1^2)$ an $N(\mu_2, \sigma_2^2)$. Derive Likelihood ratio test for testing $H_0: \mu_1 = \mu_2 Vs H_0: \mu_1 \neq \mu_2$ when population variances are equal. (20)
